在微创手术中,视频分析的手术工作流程分割是一个经过深入研究的主题。常规方法将其定义为多类分类问题,其中各个视频帧被归因于手术期标签。我们引入了一种新颖的加强学习公式,以用于离线相过渡检索。我们没有尝试对每个视频框架进行分类,而是确定每个相转换的时间戳。通过构造,我们的模型不会产生虚假和嘈杂的相变,而是相邻的相位块。我们研究了该模型的两种不同配置。第一个不需要在视频中处理所有帧(在2个不同的应用程序中仅<60%和<20%的帧),而在最新的精度下略微产生结果。第二个配置处理所有视频帧,并以可比的计算成本优于最新技术。 We compare our method against the recent top-performing frame-based approaches TeCNO and Trans-SVNet on the public dataset Cholec80 and also on an in-house dataset of laparoscopic sacrocolpopexy.我们同时执行基于框架的(准确性,精度,召回和F1得分),也可以对我们的算法进行基于事件的(事件比率)评估。
translated by 谷歌翻译
在双胞胎输血综合征(TTTS)中,单座管胎盘中的异常血管吻合可能会在两个胎儿之间产生不均匀的流量。在当前的实践中,通过使用激光消融闭合异常吻合来对TTT进行手术治疗。该手术在最小的侵入性中依赖于胎儿镜检查。有限的视野使吻合术识别成为外科医生的具有挑战性的任务。为了应对这一挑战,我们提出了一个基于学习的框架,用于视野扩展的体内胎儿镜框架注册。该框架的新颖性依赖于基于学习的关键点提案网络以及基于胎儿镜图像细分和(ii)不一致的同符的编码策略(i)无关的关键点。我们在来自6个不同女性的6个TTT手术的6个术中序列的数据集中验证了我们的框架,这是根据最新的最新算法状态,该算法依赖于胎盘血管的分割。与艺术的状态相比,提出的框架的性能更高,为稳健的马赛克在TTTS手术期间提供背景意识铺平了道路。
translated by 谷歌翻译
胎儿镜检查激光​​光凝是一种广泛采用的方法,用于治疗双胞胎输血综合征(TTTS)。该过程涉及光凝病理吻合术以调节双胞胎之间的血液交换。由于观点有限,胎儿镜的可操作性差,可见性差和照明的可变性,因此该程序尤其具有挑战性。这些挑战可能导致手术时间增加和消融不完全。计算机辅助干预措施(CAI)可以通过识别场景中的关键结构并通过视频马赛克来扩展胎儿镜观景领域,从而为外科医生提供决策支持和背景意识。由于缺乏设计,开发和测试CAI算法的高质量数据,该领域的研究受到了阻碍。通过作为MICCAI2021内窥镜视觉挑战组织的胎儿镜胎盘胎盘分割和注册(FETREG2021)挑战,我们发布了第一个Largescale Multencentre TTTS数据集,用于开发广义和可靠的语义分割和视频摩擦质量algorithms。对于这一挑战,我们发布了一个2060张图像的数据集,该数据集是从18个体内TTTS胎儿镜检查程序和18个简短视频剪辑的船只,工具,胎儿和背景类别的像素通道。七个团队参与了这一挑战,他们的模型性能在一个看不见的测试数据集中评估了658个从6个胎儿镜程序和6个短剪辑的图像的图像。这项挑战为创建通用解决方案提供了用于胎儿镜面场景的理解和摩西式解决方案的机会。在本文中,我们介绍了FETREG2021挑战的发现,以及报告TTTS胎儿镜检查中CAI的详细文献综述。通过这一挑战,它的分析和多中心胎儿镜数据的发布,我们为该领域的未来研究提供了基准。
translated by 谷歌翻译
医学图像分割的深度学习模型可能会出乎意料地且出乎意料地失败,而与训练图像相比,在不同中心获得的病理案例和图像,标签错误违反了专家知识。此类错误破坏了对医学图像细分的深度学习模型的可信赖性。检测和纠正此类故障的机制对于将该技术安全地转化为诊所至关重要,并且可能是对未来人工智能法规(AI)的要求。在这项工作中,我们提出了一个值得信赖的AI理论框架和一个实用系统,该系统可以使用后备方法和基于Dempster-Shafer理论的失败机制增强任何骨干AI系统。我们的方法依赖于可信赖的AI的可行定义。我们的方法会自动放弃由骨干AI预测的体素级标签,该标签违反了专家知识,并依赖于这些体素的后备。我们证明了拟议的值得信赖的AI方法在最大的报告的胎儿MRI的注释数据集中,由13个中心的540个手动注释的胎儿脑3D T2W MRI组成。我们值得信赖的AI方法改善了在各个中心获得的胎儿脑MRI和各种脑异常的胎儿的最先进的主链AI的鲁棒性。
translated by 谷歌翻译
本文介绍了我们参与FETA挑战2021的方法(团队名称:特拉比特)。认为医学图像分割的卷积神经网络的性能被认为与训练数据的数量正相关。 FETA挑战不会限制参与者仅使用提供的培训数据,还可以使用其他公共可用的来源。然而,开放式胎儿脑数据仍然有限。因此,有利的策略可以扩展训练数据以覆盖更广泛的围产期脑成像来源。除了敌人挑战数据之外,围产期脑部MRIS,目前可公开可用,跨越正常和病理胎儿地图空间以及新生儿扫描。然而,在不同数据集中分段的围产期脑MRIS通常具有不同的注释协议。这使得将这些数据集结合起来训练深度神经网络的挑战。我们最近提出了一系列损失职能,标签集丢失功能,用于部分监督学习。标签集丢失功能允许使用部分分段图像培训深度神经网络,即某些类可以将某些类分为超级类别。我们建议使用标签集丢失功能来通过合并几个公共数据集来改善多级胎儿脑细分的最先进的深度学习管道的分割性能。为了促进可延流性,我们的方法不会引入任何额外的超参数调整。
translated by 谷歌翻译
许多钥匙孔干预依赖于双手动处理外科手术器械,强迫主要外科医生依靠第二个外科医生作为相机助理。除了过度涉及手术人员的负担外,这可能导致图像稳定性降低,增加任务完成时间,有时由于任务的单调而有时会出现错误。由一组基本说明控制的机器人内窥镜持有者已被提出作为替代方案,但它们的不自然处理可能会增加(SOLO)外科医生的认知负荷,这阻碍了它们的临床验收。如果机器人内窥镜持有者通过语义上丰富的指令与操作外科医生合作的机器人内窥镜持有者,则可以实现手术工作流程的更无缝集成。作为概念证明,本文介绍了一种新颖的系统,为外科医生和机器人内窥镜支架之间的协同相互作用铺平了道路。该拟议的平台允许外科医生执行生理协调和导航任务,而机器人臂自动执行内窥镜定位任务。在我们的系统中,我们提出了一种基于外科刀具分割的新型工具提示定位方法和一种新型的视觉伺服方法,可确保内窥镜摄像机的平滑和适当的运动。我们验证了我们的视觉管道并运行了对该系统的用户学习。通过使用欧洲妇科手术课程验证的腹腔镜运动来确保研究的临床相关性,涉及双部手动协调和导航。我们拟议的系统的成功应用提供了更广泛的临床采用机器人内窥镜架的有希望的起点。
translated by 谷歌翻译
限制机器学习系统的故障对于安全至关重要的应用至关重要。为了提高机器学习系统的鲁棒性,已提出了分配鲁棒优化(DRO)作为经验风险最小化(ERM)的概括。然而,由于与ERM的随机梯度下降(SGD)优化器相比,由于可用于DRO的优化器的相对效率相对效率相对低效率,因此在深度学习中的使用受到了严格的限制。我们建议使用硬度加权采样的SGD,这是机器学习中DRO的原则性高效优化方法,在深度学习的背景下特别适合。与实践中的硬示例挖掘策略类似,所提出的算法可以直接实施和计算,并且与用于深度学习的基于SGD的优化器一样有效,需要最小的开销计算。与典型的临时硬采矿方法相反,我们证明了我们的DRO算法的收敛性,用于过度参数化的深度学习网络,并具有RELU激活以及有限数量的层和参数。我们对MRI中胎儿脑3D MRI分割和脑肿瘤分割的实验证明了我们方法的可行性和有用性。使用我们的硬度加权采样进行训练,最先进的深度学习管道可改善自动胎儿脑中解剖学变异的鲁棒性3D MRI分割,并改善了对脑肿瘤分割的图像方案变化的鲁棒性。我们的代码可从https://github.com/lucasfidon/hardnessweightedsampler获得。
translated by 谷歌翻译
Modeling lies at the core of both the financial and the insurance industry for a wide variety of tasks. The rise and development of machine learning and deep learning models have created many opportunities to improve our modeling toolbox. Breakthroughs in these fields often come with the requirement of large amounts of data. Such large datasets are often not publicly available in finance and insurance, mainly due to privacy and ethics concerns. This lack of data is currently one of the main hurdles in developing better models. One possible option to alleviating this issue is generative modeling. Generative models are capable of simulating fake but realistic-looking data, also referred to as synthetic data, that can be shared more freely. Generative Adversarial Networks (GANs) is such a model that increases our capacity to fit very high-dimensional distributions of data. While research on GANs is an active topic in fields like computer vision, they have found limited adoption within the human sciences, like economics and insurance. Reason for this is that in these fields, most questions are inherently about identification of causal effects, while to this day neural networks, which are at the center of the GAN framework, focus mostly on high-dimensional correlations. In this paper we study the causal preservation capabilities of GANs and whether the produced synthetic data can reliably be used to answer causal questions. This is done by performing causal analyses on the synthetic data, produced by a GAN, with increasingly more lenient assumptions. We consider the cross-sectional case, the time series case and the case with a complete structural model. It is shown that in the simple cross-sectional scenario where correlation equals causation the GAN preserves causality, but that challenges arise for more advanced analyses.
translated by 谷歌翻译
Deep learning models are known to put the privacy of their training data at risk, which poses challenges for their safe and ethical release to the public. Differentially private stochastic gradient descent is the de facto standard for training neural networks without leaking sensitive information about the training data. However, applying it to models for graph-structured data poses a novel challenge: unlike with i.i.d. data, sensitive information about a node in a graph cannot only leak through its gradients, but also through the gradients of all nodes within a larger neighborhood. In practice, this limits privacy-preserving deep learning on graphs to very shallow graph neural networks. We propose to solve this issue by training graph neural networks on disjoint subgraphs of a given training graph. We develop three random-walk-based methods for generating such disjoint subgraphs and perform a careful analysis of the data-generating distributions to provide strong privacy guarantees. Through extensive experiments, we show that our method greatly outperforms the state-of-the-art baseline on three large graphs, and matches or outperforms it on four smaller ones.
translated by 谷歌翻译
Data-driven models such as neural networks are being applied more and more to safety-critical applications, such as the modeling and control of cyber-physical systems. Despite the flexibility of the approach, there are still concerns about the safety of these models in this context, as well as the need for large amounts of potentially expensive data. In particular, when long-term predictions are needed or frequent measurements are not available, the open-loop stability of the model becomes important. However, it is difficult to make such guarantees for complex black-box models such as neural networks, and prior work has shown that model stability is indeed an issue. In this work, we consider an aluminum extraction process where measurements of the internal state of the reactor are time-consuming and expensive. We model the process using neural networks and investigate the role of including skip connections in the network architecture as well as using l1 regularization to induce sparse connection weights. We demonstrate that these measures can greatly improve both the accuracy and the stability of the models for datasets of varying sizes.
translated by 谷歌翻译